Relay 1	Relay 2	Relay 3	Relay 4	Relay 5
1. 3	1. 15	1. 7	1. 45	1. 60
2. 4	2. 17	2. 140	2. 7	2. 24
3. 22	3. 2	3. 5	3. 25	3. 2
4. 320	4. 1792	4. 395	4. 14	4. 3
5. 78	5. 4088	5. 189	5. 9	5. 9
6. 5	6. 30	6. 7	6. 20	6. 200

Relay 1

- 1. Only 3 regular polygons can tessellate a plane—triangle, square, and hexagon.
- 2. If the three plane are parallel, then four regions are created.
- 3. $y = -5x + b \rightarrow 2 = -5(4) + b \rightarrow b = 22$.
- 4. $4x^{2} + 24x 17 + 5y^{2} 10y 22 = 0 \rightarrow 4x^{2} + 24x + 5y^{2} 10y = 39$ $4(x^{2} + 6x + 9) + 5(y^{2} - 2y + 1) = 39 + 36 + 5 = 80 \rightarrow \frac{(x + 3)^{2}}{20} + \frac{(y - 1)^{2}}{16} = 1$ Area = $\sqrt{20}\sqrt{16\pi} = \sqrt{320\pi}$. 5. $\left\lfloor \frac{320}{125} \right\rfloor + \left\lfloor \frac{320}{25} \right\rfloor + \left\lfloor \frac{320}{5} \right\rfloor = 2 + 12 + 64 = 78$. 6. $78 - 6 = 72 \rightarrow \frac{360}{5} = 5$.

$$0.78 - 0 = 72 \rightarrow \frac{1}{72}$$

Relay 2

- 1. Area $=\frac{1}{2}r^2\theta = \frac{1}{2}(144)\theta = 6\pi \rightarrow \theta = \frac{\pi}{12} = 15^\circ.$ 2. $\frac{15}{9} = 1 \text{ R7} \rightarrow 17.$
- 3. $17^4 = 83521$ or use mods.
- 4. $\frac{8!}{3!5!}(1)^3(2)^5 = 1792.$
- 5. $1792 = 2^{8}7^{1}$. Sum of positive divisors: (1+2+4+8+16+32+64+128+256)(1+7) = 4088.
- 6. Let *t* represent Sam's time. Then $84t+56(t-2)=4088 \rightarrow t=30$.

Relay 3

- 1. $(x-y)^2 = x^2 2xy + y^2 = 39 \rightarrow x^2 + y^2 = 39 + 2(-16) = 7.$
- 2. $\frac{L}{M} = \frac{17}{23} = \frac{119}{161}$. 1/7 of 161 is 23. $\frac{119+23}{161-23} = \frac{142}{138} = \frac{71}{69}$. Sum is 140.
- 3. An integer with three divisors must be the square of a prime number. There are five of these in this interval: 4, 9, 25, 49, and 121.
- 4. $C = 20. \sqrt{(400-9)(400-1)+16} = \sqrt{(395-4)(395+4)+16} = 395.$
- 5. $395(\log 3) \approx 395(0.4771) \approx 188.46 \rightarrow 189.$

6. The perimeter of the equilateral triangle is $\sqrt{189} = 3\sqrt{21}$, so each side has length $\sqrt{21}$.

The triangle area is
$$\frac{s^2\sqrt{3}}{4} = \frac{21\sqrt{3}}{4} = \frac{h^2\sqrt{3}}{3} \rightarrow 63\sqrt{3} = 4h^2\sqrt{3} \rightarrow h^2 = \frac{63}{4} \rightarrow h = \frac{3\sqrt{7}}{2}$$
. The circumscribed circle has radius $\frac{2}{3}h$, which will be $\sqrt{7}$. The area of the circle will be 7π .

Relay 4

1. Let
$$\frac{x}{44 + \frac{x}{44 + \frac{x}{44 + 0}}} = c$$
, so that $\frac{x}{44 + c} = c$. Cross multiplying, we get $c^2 + 44c - x = 0$.

x = 45 is the smallest integer that produces integer values.

2. Let
$$M^2 = B^2 - 45$$
. $B^2 - M^2 = 45 \rightarrow (B + M)(B - M) = 45$. We now have three options for (B, M) :

$$\begin{cases} B+M=45\\ B-M=1 \end{cases} \rightarrow (23, 22) \quad \begin{cases} B+M=15\\ B-M=3 \end{cases} \rightarrow (9, 6) \quad \begin{cases} B+M=9\\ B-M=5 \end{cases} \rightarrow (7, 2) \quad \text{The smallest possible } B \text{ is } 7. \end{cases}$$

3. $(x-7)^2 - 2(y-3)^2 = 8 \rightarrow \frac{(x-7)^2}{8} - \frac{(y-3)^2}{4} = 1$. The hyperbola opens horizontally so the

directrices are vertical. Using $x = h \pm \frac{a^2}{c}$, we have $x = 7 \pm \frac{8}{2\sqrt{3}} \rightarrow x = \frac{21 \pm 4\sqrt{3}}{3}$. 21 + 4 = 25.

4. Using a system of equations, we have one equation for monetary values and one equation for number of coins: P+10D+25Q=200 and P+D+Q=50. Subtracting, we get 9D+24Q=150, or 3D+8Q=50. The only feasible possibilities for (D, Q) are (6, 4) and (14, 1), so the maximum

maximum

possible number of dimes is 14.

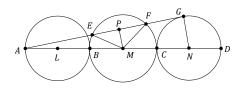
- 5. $f(n+1) = f(n) + \frac{1}{2}$, generating the arithmetic sequence 2, 2.5, 3, 3.5, f(15) = f(1) + 14(.5) = 2 + 7 = 9.
- 6. Using properties of logarithms we can simplify the expression to $40\log_9 \frac{6x-5}{2x+1}$. This can be

rewritten again as $40\log_9\left(\frac{-8}{2x+1}+3\right)$. As *x* approaches infinity, the expression approaches the value $40\log_9 3 \rightarrow 40\left(\frac{1}{2}\right) = 20$.

Relay 5

1. Let the fourth root be *d*. Since there is no x^3 term, the sum of the roots is 0, so d = -6. The value of *a* is the sum of the product of the roots taken two at a time, so a = (1)(2) + (1)(3) + (1)(-6) + (2)(3) + (2)(-6) + (3)(-6) = -25. The *c* value is the product of the roots, which is -36. $|a+c|-1 \rightarrow 61-1=60$.

2. Construct radii from *M* to *E* and *F* and one perpendicular \overline{EF} at *P*. By a property of circles, *P* will be the midpoint of \overline{EF} . Also construct a radius from *N* to *G*. We now have VAPM ~VAGN, so that $\frac{PM}{AM} = \frac{GN}{AN} \rightarrow \frac{PM}{45} = \frac{15}{75} = \frac{1}{5} \rightarrow PM = 9$. $(PM)^2 + (PF)^2 = (FM)^2 \rightarrow 81 + (PF)^2 = 225 \rightarrow PF = 12$, so EF = 24.



- 3. B=24, so a=2, b=4. $p*2=\frac{4^p}{2^2}=4 \rightarrow 4^p=16 \rightarrow p=2$.
- 4. The one-, two-, and three-digit integers beginning with three (and the total number of digits for each group) are 3 (1), 30-39 (20), and 300-399 (300), for a total of 321 digits. 2018–321=1697. The remaining integers will be four-digit integers. 1697 has a remainder of 1 when divided by four, so the 2018th digit will be a 3.
- 5. $\frac{3}{\log_{a^3}(ab)} + \frac{3}{\log_{b^3}(ab)} \rightarrow \frac{9}{\log_a(ab)} + \frac{9}{\log_b(ab)} \rightarrow \frac{9\log a}{\log(ab)} + \frac{9\log b}{\log(ab)} \rightarrow \frac{9\log(ab)}{\log(ab)} = 9.$
- 6. The height of the shaded trapezoid is $\frac{1}{10}$ the height of the triangle, *h*. If the base of the triangle is *b*, then the trapezoid area, 38, is found by $\frac{1}{2}\left(\frac{1}{10}h\right)(b+0.9b)$. Simplifying we get the area of the triangle, $\frac{1}{2}bh=200$.

